Разное

Самый лучший проводник: Проводники и диэлектрики

15.03.1998

Содержание

Проводники и диэлектрики


Все материалы, существующие в природе, различаются своими электрическими свойствами. Таким образом, из всего многообразия физических веществ в отдельные группы выделяются диэлектрические материалы и проводники электрического тока. 

Что представляют собой проводники?

Проводник – это такой материал, особенностью которого является наличие в составе свободно передвигающихся заряженных частиц, которые распространены по всему веществу. 

Проводящими электрический ток веществами являются расплавы металлов и сами металлы, недистиллированная вода, раствор солей, влажный грунт, человеческое тело.

Металл – это самый лучший проводник электрического тока. Также и среди неметаллов есть хорошие проводники, например, углерод. 

Все, существующие в природе проводники электрического тока, характеризуются двумя свойствами:

  • показатель сопротивления;
  • показатель электропроводности.
Сопротивление возникает из-за того, что электроны при движении испытывают столкновение с атомами и ионами, которые являются своеобразным препятствием. Именно поэтому проводникам присвоена характеристика электрического сопротивления. Обратной сопротивлению величиной является электропроводность. 

Электропроводность – это характеристика (способность) физического вещества проводить ток. Поэтому свойствами надежного проводника являются низкое сопротивление потоку движущихся электронов и, следовательно, высокая электропроводность. То есть, лучший проводник характеризуется большим показателем проводимости.  

Например кабельная продукция: медный кабель обладает большей электропроводностью по сравнению с алюминиевым.

Что представляют собой диэлектрики?

Диэлектрики – это такие физические вещества, в которых при заниженных температурах отсутствуют электрические заряды. В состав таких веществ входят лишь атомы нейтрального заряда и молекулы. Заряды нейтрального атома имеют тесную связь друг с другом, поэтому лишены возможности свободного перемещения по всему веществу. 

Самым лучшим диэлектриком является газ. Другие непроводящие электрический ток материалы – это стеклянные, фарфоровые, керамические изделия, а также резина, картон, сухое дерево, смолы и пластмассы. 

Диэлектрические предметы – это изоляторы, свойства которых главным образом зависимы от состояния окружающей атмосферы. Например, при высокой влажности некоторые диэлектрические материалы частично лишаются своих свойств. 

Проводники и диэлектрики широко используются в сфере электротехники для решения различных задач. 

Например, вся кабельно-проводниковая продукция изготавливается из металлов, как правило, из меди или алюминия. Оболочка проводов и кабелей полимерная, также, как и вилках всех электрических приборов. Полимеры – отличные диэлектрики, которые не допускают пропуска заряженных частиц. 

Серебряные, золотые и платиновые изделия – очень хорошие проводники. Но их отрицательная характеристика, которая ограничивает использование, состоит в очень высокой стоимости.

Поэтому применяются такие вещества в сферах, где качество гораздо важнее цены, которая за него уплачивается (оборонная промышленность и космос). 

Медные и алюминиевые изделия также являются хорошими проводниками, при этом имеют не столь высокую стоимость. Следовательно, использование медных и алюминиевых проводов распространено повсеместно. 

Вольфрамовые и молибденовые проводники имеют менее хорошие свойства, поэтому используются в основном в лампочках накаливания и нагревательных элементах высокой температуры. Плохая электропроводность может существенно нарушить работу электросхемы. 

Диэлектрики также различаются между собой своими характеристиками и свойствами. Например, в некоторых диэлектрических материалах также присутствуют свободные электрически заряды, пусть и в небольшом количестве. Свободные заряды возникают из-за тепловых колебаний электронов, т.е. повышение температуры все-таки в некоторых случаях провоцирует отрыв электронов от ядра, что понижает изоляционные свойства материала. Некоторые изоляторы отличаются большим числом «оторванных» электронов, что говорит о плохих изоляционных свойствах. 

Самый лучший диэлектрик – полный вакуум, которого очень трудно добиться на планете Земля. 

Полностью очищенная вода также имеет высокие диэлектрические свойства, но таковой даже не существует в реальности. При этом стоит помнить, что присутствие каких-либо примесей в жидкости наделяет ее свойствами проводника. 

Главный критерий качества любого диэлектрического материала – это степень соответствия возложенным на него функциям в конкретной электрической схеме. Например, если свойства диэлектрика таковы, что утечка тока совсем незначительная и не приносит никакого ущерба работе схемы, то диэлектрик является надежным. 

Что такое полупроводник?

Промежуточное место между диэлектриками и проводниками занимают полупроводники. Главное отличие проводников заключается в зависимости степени электропроводности от температуры и количества примесей в составе. При том материалу свойственны характеристики и диэлектрика, и проводника. 

С ростом температуры электропроводность полупроводников растет, а степень сопротивления при этом падает. При понижении температуры сопротивление стремится к бесконечности. То есть, при достижении нулевой температуры полупроводники начинают вести себя как изоляторы. 

Полупроводниками являются кремний и германий.

Статья по теме: Электрический ток и его скорость

Лучший проводник — Большая Энциклопедия Нефти и Газа, статья, страница 1

Лучший проводник

Cтраница 1

Лучший проводник — серебро ( табл. 5.7) имеет высокую степень миграции атомов по поверхности подложки и быстро покрывается пленкой сернистых соединений.  [1]

Лучшие проводники теплоты и электрического тока — серебро, медь, золото и алюминий.  [2]

Лучшим проводником является серебро, затем следует медь.  [3]

Лучшими проводниками являются те металлы, которые оказывают наименьшее сопротивление прохождению электрического тока.  [4]

Лучшими проводниками электричества являются серебро, медь, золото и алюминий, Эти же металлы являются наиболее теплопроводными.  [5]

Лучшим проводником электричества является серебро, за которым следуют медь, золото, алюминий, железо. Наряду с медными изготовляются и алюминиевые электрические провода.  [6]

Лучшими проводниками теплоты являются металлы, у которых Я изменяется от 3 до 418 вт / м-град. Коэффициенты теплопроводности чистых металлов, за исключением алюминия, с возрастанием температуры убывают.  [7]

Лучшим проводником электричества является серебро, за которым следуют медь, золото, алюминий, железо. Наряду с медными изготовляются и алюминиевые электрические провода.  [8]

Один из лучших проводников электричества — медь — никак не удается перевести в сверхпроводящее состояние.  [9]

Один из лучших проводников электричества — медь — никак не удается перевести в сверхпроводящее состояние.  [10]

Серебро — самый лучший проводник электричества и тепла. В изделиях применяется в виде сплава с другими металлами, главным образом с медью, что повышает их твердость. Содержание серебра в сплавах указывается пробой.  [11]

Тугоплавкие металлы являются лучшими проводниками электрического тока, но характеристики их значительно хуже, чем легкоплавких металлов, так как температура плавления их высока. Так, например, температура плавления меди равна 1080 С, а серебра 960 С. Плавкие вставки из меди и серебра обладают малым сечением и большой разрывной способностью.  [12]

Низшее хлористое соединение металла является

лучшим проводником тока, чем высшее хлористое соединение того же металла.  [13]

После серебра и меди металлический алюминий — лучший проводник электричества и тепла.  [14]

Если труба водяная ( вода обычно является лучшим проводником, чем почва), то это воздействие будет обнаружено внутри трубы. Сваренные трубы в значительной степени уменьшают неприятности о т соединений, и теперь сварка часто применяется для газовых магистралей.  [15]

Страницы:      1    2    3    4

Какой металл является наилучшим проводником?. Книга всеобщих заблуждений

Какой металл является наилучшим проводником?

Серебро.

Самый лучший проводник тепла и электричества является также и самым отражающим из всех химических элементов. Главный недостаток серебра в том, что оно слишком дорогое. Единственная причина, почему в нашем электрооборудовании мы используем не серебряные, а медные провода, заключается в том, что медь – второй по проводимости элемент – намного дешевле.

Помимо украшений, серебро главным образом используется в фотопромышленности, батарейках с длительным сроком эксплуатации и солнечных панелях.

Серебро обладает любопытнейшей способностью стерилизовать воду. Причем требуется буквально крошечное количество – десять частей на миллиард. Сей удивительный факт был известен еще с древнейших времен: так, в V веке до н. э. Геродот писал о персидском царе Кире, который постоянно возил с собой личный запас воды, взятой из особого источника, вскипяченной и запечатанной в серебряные сосуды.

И римляне, и греки не раз отмечали, что еда и питье, помещенные в серебряную посуду, сохраняются намного дольше. Сильные бактерицидные качества серебра использовались за множество веков до того, как были обнаружены сами бактерии. Этим можно объяснить, почему на дне древних колодцев часто находят серебряные монеты.

Небольшое предостережение, прежде чем вы начнете лить пиво в свою серебряную кружку.

Во-первых, серебро хоть и убьет бактерии в лабораторных условиях, однако далеко не факт, что оно даст тот же самый эффект, оказавшись у вас внутри. Многие из предполагаемых достоинств серебра до сих пор не подтверждены. А Управление по санитарному надзору за качеством пищевых продуктов и медикаментов в США даже запретило компаниям рекламировать пользу серебра для здоровья.

Во-вторых, существует такая болезнь – аргирия. Ее развитие напрямую связано с попаданием внутрь организма человека частиц серебра, растворенных в воде. Наиболее явным симптомом аргирии является отчетливый голубой оттенок кожи.

С другой стороны, соли серебра являются наиболее безопасным заменителем хлора в воде плавательных бассейнов, а в США серебром даже пропитывают носки легкоатлетов, чтобы ноги не пахли.

Вода – исключительно плохой проводник электричества, особенно вода чистая, которая, кстати, используется как диэлектрик. Все дело в том, что электричество проводят не молекулы H2O, а растворенные в воде химикаты – например, соль.

Морская вода проводит электричество в сто раз лучше пресной, но даже при этом она в миллион раз худший проводник электричества по сравнению с серебром.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Самые лучшие проводники тока

Все вещества разделяются относительно способности проводить электроэнергию на три большие группы: проводники, диэлектрики и полупроводники. К группе проводящих электроток материалов относят металлы и их соединения, соли, щелочи и углерод. Диэлектрики не обладают пропускной способностью: это бумага, фарфор, керамика, сухое дерево. В полупроводниках способность пропускать заряженные частицы возможна только при определенных условиях, к примеру, при нагреве. Известные полупроводники: бор, олово, углерод, йод.

Что такое проводимость?

Степень электропроводности материала рассчитывается на основе физической величины – проводимости. Эта величина обратно пропорциональна величине сопротивления, обозначается сименс (См). Удельная проводимость: величина, которая определяет меру способности материала пропускать ток. Таким образом определяется самый электропроводный металл, при расчетах используют высокоточное электронное оборудование: микроомметры.Электронная проводимость относится к металлам, ионная – к электролитам: солям, щелочам и кислотам.

Известные проводники: свойства

Металлы – самые лучшие проводники. Характеристика связана с наличием в их составе свободных электронов, при воздействии электромагнитных сил образующих направленный электроток. Способностью свободно пропускать ток обладают только металлы в чистом виде. В случае добавления в их состав других веществ эта способность снижается. Топ лучших проводников давно определен.

Серебро

Самый известный представитель проводников, но из-за его высокой стоимости металл редко применяется в качестве проводника для оснащения приборов. В некоторых случаях применение серебра бывает оправданным. Серебряное напыление наносят на контактные группы дорогостоящих приборов, напыление предохраняет их от окисления.

Золото

Драгоценный металл также наделен свойствами проводимости, но его стоимость позволяет использовать золото только в крайних случаях. Золото напыляют на печатные платы, применяют в медицинском и космическом оборудовании.

Медь

Хороший проводник, материал стоит гораздо дешевле серебра и золота, поэтому применяется повсеместно. Медь идет на изготовление проводов, сердечники электрических магнитов обматывают медной проволокой. Медь хорошо припаивается, поэтому металл применяется, когда требуется сделать много соединений.

Алюминий

Материал также часто используется в конструкции механизмов, но имеет недостаток. Алюминий образовывает электрически стойкую поверхность оксида, которая может привести к перегреву оборудования и его возгоранию. Эту особенность можно исключить, если выполнить дополнительную защиту проводов. К примеру, алюминий применяется при подключении телефонных кабелей, которые дополнительно защищают стальными кожухами.

Сталь и латунь

Металлы также относятся к группе проводников. Сталь – негибкий металл, поэтому используется в оснащении установок только в качестве крупных конструкций: щитов или коробов. Латунь также относится к электропроводникам, но свойства электропроводности у латуни хуже, чем у стали. Латунь дешевле стали.

Сфера применения

Свойство электропроводности применяется повсеместно. В сельском хозяйстве этот показатель способствует улучшению плодородия земель. Показатель служит основой для проверки качества воды, ее сравнения с эталоном. В промышленности на свойстве проводимости базируется механизм создания гальванических ванн: основы для нанесения на поверхности установок защитных покрытий.Технология определения проводимости способствует точному определению содержания растворенных твердых веществ в средах.

Проводники электричества — Справочник химика 21

    Электрические и оптические свойства. Наиболее важной нз электрических характеристик элементарных веществ является электрическая проводимость, с которой, собственно, в значительной мере связана классификация элементарных веществ. Так, элементарные металлы являются проводниками электричества первого рода, металлоиды—полупроводниками, элементарные окислители — диэлектриками, благородные газы — скользящими проводниками электричества. [c.115]
    Графит — огнеупорный, теплопроводный материал, хорошо переносит резкую смену температур, поэтому его используют для изготовления плавильных тиглей. В противоположность алмазу графит — довольно хороший проводник электричества и находит применение [c.84]

    Реагенты, а также ионизированные или способствующие ионизации реагентов вещества, обеспечивающие прохождение электрического тока эта часть системы является ионным проводником электричества (проводник И рода] и называется электролитом. [c.12]

    Химическим гальваническим элементом называют устройство, в котором энергия химической реакции преобразуется в электрическую. Примером может служить элемент Якоби — Даниэля (рис. 10.1). Он состоит из двух электродов — медной пластинки, погруженной в раствор сульфата меди, и цинковой пластинки, погруженной в раствор сульфата цинка. Соединение между электродами осуществляется посредством солевого (электролитического) мостика, который представляет собой либо сифон, заполненный насыщенным раствором электролита, либо изогнутую стеклянную трубку, заполненную агар-агаром с каким-либо электролитом. Такой студнеобразный раствор не выливается из сифона и является хорошим проводником электричества. [c.82]

    Алюминий — прекрасный проводник электричества. При одинаковой массе его проводимость примерно в два раза выше, чем у меди. Большинство линий электропередач сделаны из алюминия. Кратко области применения этого металла суммированы на рис. 11.12. [c.161]

    Совершенно чистая вода совсем не проводит электричество, являясь диэлектриком, но малейшая примесь постороннего тела переводит воду в разряд проводников электричества. [c.56]

    Предельным случаем такого процесса конденсации циклов является графит, состоящий из атомных плоскостей с гексагональными циклами, в которых делокализация электронов простирается на всю плоскость. Благодаря наличию делокализованных электронов графит является хорошим проводником электричества в отличие от алмаза, который обладает свойствами диэлектрика. Графит можно рассматривать как двумерный металл, в котором подвижность электронов ограничена отдельными атомными плоскостями, упакованными в стопку. [c.301]

    Свойства серебра. Серебро — уникальный катализатор окисления этилена. Все катализаторы, практически используемые для этой реакции, основаны на серебре. Серебро — лучший среди проводников электричества (его электропроводность составляет 1,67 мкОм/см) и лучший после алмаза проводник тепла с теплопроводностью 4,29 Вт/(см-К). Данные об адсорбции на чистом металлическом серебре этилена, окиси этилена, воды и диоксида углерода противоречивы, так как очень трудно получить чистую поверхность серебра, но можно утверждать, что ни одно из этих соединений не адсорбируется на серебре достаточно хорошо. Окись этилена и в гораздо меньшей степени диоксид углерода могут адсорбироваться и затем быстро реагировать и разлагаться на поверхности серебра, загрязняя ее кислородсодержащими формами. Трудность, сопряженная с получением чистых и воспроизводимых поверхностей, показана в работе [20] и других. [c.226]


    ЧТО дает (аналогично последовательному включению проводников электричества) - [c.83]

    Элементы, активируемые аммиаком. Принцип устройства таких элементов основан на том, что некоторые соли становятся, хорошими проводниками электричества при насыщении их аммиаком. К таким солям относится, например, роданистый аммоний, поглощающий аммиак с большой скоростью и образующий электропроводную, жидкость, которая имеет невысокое давление насыщенных паров аммиака. [c.45]

    На основе более поздних работ процессы, протекающие на положительном электроде, были представлены по-иному. Гидрат закиси никеля — плохой проводник электричества. Окисление при заряде начинается в месте соприкосновения частиц этого гидрата с токопроводящей добавкой. При этом электрохимические процессы на электроде протекают в твердой фазе на границе соприкосновения ее с электролитом. [c.84]

    Проверка формулы Рэлея на опытах показала, что применение ее ограничено. Во-первых, она применима только к золям, в которых вещество дисперсной фазы не является проводником электричества и совершенно неприменима к металлическим золям, так как в окраске их решающую роль играет поглощение (т. е. абсорбция) света. Во-вторых, даже для систем с частицами из непроводников это уравнение применимо только лишь для типичных золей, т. е. для частиц размером от 5 до 100 нм. [c.296]

    Электрическая проводимость и подвижность ионов, очевидно, являются характеристиками способности раствора электролита быть проводником электричества, а поэтому должны быть связаны друг с другом. Для установления вида этой связи следует воспользоваться законом Ома в дифференциальной форме  [c.216]

    Если газу сообщить столь большую энергию, что от его молекул начнут отрываться электроны, тов предоставленном ему пространстве будут находиться положительно и отрицательно заряженные частицы. Происходит термическая ионизация, в результате которой газ становится проводником электричества, переходя в плазменное состояние. Между плазмой и газом нет резкого различия. Но оно возникает, как только вещество попадает в электрическое или магнитное поле в этом случае движение частиц в плазме становится упорядоченным. [c.240]

    Чистый алюминий представляет собой легкий серебристо-белый металл (плотность 2,7 г/см — почти в три раза легче железа), очень пластичный, ковкий и тягучий, т. пл. = 660°, т. кип. = 2450°. После серебра и меди металлический алюминий — лучший проводник электричества и тепла. [c.333]

    При погружении малоактивного металла — меди, например,— в раствор ее соли будет иметь место обратный процесс, т. е. переход ионов металла из раствора в кристаллическую решетку металла. В данном случае поверхность металла приобретает положительный заряд, а прилегающий к ней слой раствора—отрицательный (за счет избытка в растворе анионов). Здесь также возникает двойной электрический слой и, следовательно, определенный электродный потенциал. Таким образом, при погружении металлов в растворы их солей более активные из них (2п, Мд, Ре и др.) заряжаются отрицательно, а менее активные (Си, Ag, Аи и др.) положительно. Потенциал каждого электрода зависит оТ природы металла, концентрации (точнее активности) его ионов в растворе, а также от температуры. Если цинковую и медную пластинки соединить проводником электричества, то электроны с цинковой пластинки устремляются по нему к медной, в цепи появляется электрический ток, который может быть измерен гальванометром О. [c.156]

    В окислительно-восстановительных реакциях переход электронов от восстановителей к окислителям происходит непосредственно при контакте частиц и энергия химической реакции превращается в теплоту. Но эти реакции можно проводить и в таких условиях, когда процессы окисления и восстановления пространственно разделены, т. е. восстановитель отдает электроны окислителю через проводник электричества, в результате чего образуется поток электронов (электрический ток) в металлическом проводнике. [c.188]

    Лучшими проводниками электричества являются серебро, медь, золото и алюминий. Эти же металлы являются наиболее теплопроводными. Важным свойством металлов является пластичность — способность прокатываться в тонкие листы, вытягиваться в проволоку Пластичность металлов уменьшается в ряду Аи, Ад, Си, РЬ, 2п, Ре. [c.318]

    Согласно современным представлениям в металлическом кристалле электроны ведут себя не так, как в отдельных, свободных атомах, например в атомах паров металла. В последнем случае электроны могут располагаться в каждом атоме лишь на ограниченном числе энергетических уровней. В кристалле же эти энергетические уровни для валентных электронов расширяются вследствие объединения одинаковых уровней всех отдельных атомов данного кристалла. Такие объединения называются электронными зонами, или полосами. Электроны, принимающие участие в химической связи (валентные), располагаются в отдельной зоне, называемой валентной. Выще располагается свободная от электронов энергетическая зона, или зона проводимости. В металлах при наложении разности электрических потенциалов электроны легко переходят из нижней валентной зоны в верхнюю свободную зону проводимости. Именно поэтому металлы являются хорошими проводниками электричества. [c.164]


    К металлам обычно относят простые вещества, являющиеся хорошими проводниками электричества (проводники первого рода) и тепла, обладающие характерным металлическим блеском (высокой способностью отражать свет), непрозрачностью, вязкостью, ковкостью, тягучестью. Металлические свойства сохраняются только в твердом и жидком состояниях, в парах они исчезают. Типичными металлами являются натрий, калий, железо, медь, золото и др. [c.215]

    Подобные материалы, которые в нормальном состоянии являются диэлектриками, а в возбужденном (под действием теплоты или света) —-проводниками электричества, называют полупроводниками. У полупроводников ширина запрещенной зоны А составляет от 0,1 до 3 эВ. [c.75]

    УА-группу составляют пять элементов азот Ы, фосфор Р, мышьяк Аз, с у р ь м а 8Ь и в и С М у т В1. Наличие пяти электронов на внещнем энергетическом уровне их атомов (rts np ) придает им окислительные свойства, т. е. способность проявлять в соединениях степень окисления, равную —3. Однако по мере увел чения числа энергетических уровней в атоме и особенно при проявлении экранирующего ядро предвнешнего -подуровня, начиная с мышьяка, неметаллический характер элементов заметно ослабевает. Азот — типичный неметалл фосфор — неметалл, но в одной из своих модификаций — черной, получаемой при 200°С и 1,2 ГПа (12 000 атм), — проявляет полупроводниковые свойства мышьяк и сурьма в своих более устойчивых модификациях проявляют полупроводниковые свойства и, наконец, висмут — металл, проявляющий хрупкость, что характерно для неметаллических кристаллов. Усиление металлических черт в характере элементов явно проявляется в значениях ширины запрещенной зоны (см. рис-. 28) для кристаллов простых веществ, образованных ими. Так, (Для черного фосфора А =1,5 эВ, для серого мышьяка 1,2 эВ, для серой сурьмы 0,12 эВ, а висмут является проводником электричества. [c.251]

    В полупроводнике, представляющем собой химическое соединение, свободных носителей тока нет. Только тепловое движение, поглощение света или другие энергетические факторы приводят к возбуждению электронов и делают вещество проводником электричества. Тепловое движение ослабевает с понижением температуры, соответственно убывает и электропроводность полупроводников, падая до нуля. При достаточно низкой температуре полупроводник становится изолятором, и резкой границы между ними нет. В то же время металл нельзя превратить в проводники другого типа термической обработкой. [c.160]

    Если в твердом состоянии перемещения ионов под действием внешнего электрического поля практически ничтожны, то в жидком состоянии, наоборот, ионы подвижны, и расплавленные ионные соединения являются хорошими проводниками электричества проводимость осуществляется этими ионами. [c.111]

    Ковалентные решетки — плохие проводники электричества. Действительно, поскольку они построены из атомов, ионная проводимость исключена. С другой стороны, все электроны внешней оболочки использованы для образования связей значит, электронная проводимость не может осуществляться из-за отсутствия свободных электронов. [c.113]

    Электронное облако внутри решетки легко привести в движение с помощью электрического ноля следовательно, металл — хороший проводник электричества однако трудно вырвать электрон из металла, поскольку между ансамблем положительных ионов и электронами действуют силы притяжения. [c.116]

    Ковалентные решетки — плохие проводники электричества. Ионная проводимость в них невозможна, так как они построены из атомов. Электронная проводимость также исключена, потому что все электроны внешней оболочки использованы для образования связей и свободных электронов нет. [c.32]

    Явление радиоактивности было обнаружено в 1896 г. французским ученым Анри Беккерелем. Он заметил, что уран и его соединения излучают невидимые лучи, которые вызывают почернение в темноте фотографической пластинки, а также ионизируют воздух и делают его проводником электричества. [c.27]

    Ртуть — единственный жидкий при комнатной температуре металл. Его символ, Hg, происходит из латинского слова hydrargyrum, что значит подвижное или жидкое серебро. Ртуть имеет важные области применения, часть которых обусловлены именно ее жидким состоянием. Как прекрасный проводник электричества она используется в тихих переключателях света. Также ее можно найти в термометрах, термостатах, ртутных уличных лампах, флуоресцентных лампах и в некоторых красках. В жидком виде ртуть не особенно опасна, однако ее пары весьма опасны для здоровья. Поскольку жидкая ртуть медленно испаряется, необходимо избегать прямого контакта с ней. [c.73]

    Электролитами называются вещества, молекулы которых в определенных условиях распадаются на положительно и отрицательно заряженные ионы. Этот процесс получил название электролитической диссоциации. Ионы подвергщегося диссоциации электролита способны переносить электричество. В связи с этой способностью электролиты назьшают проводниками электричества второго рода в отличие от проводников первого рода — металлов, в которых электричество переиосигся посредством электронов. [c.171]

    Электромагнитные и оптические свойства. Элементарные металлы являются проводниками электричества первого рода. Способность металлов проводить электричество—их электрическая проводимость — обусловлена наличием в их криста 1Л 1ческнх решетках электронов, находящихся в состоянии проводимости. Энергетическое состояние электронов проводимости обусловлено расщен-лением электронных урорней в зависимости от расстояния между центрами атомов в кристалле (рис. 31). Наличие электронов проводимости может быть доказано посредством исследования эф- [c.218]

    Электрохимия — это наука, которая изучает закономерности, связанные с взаимным превращением химической и электрической форм энергии. Взаимное превращение этих форм энергии совершается в электрохимических системах. Непременными составными частями электрохимической системы являются ионный проводник электричества — электролит два металлических электрода, которые создают контакт двух фаз — жидкой и твердой внешняя цепь — металл1 ческий проводник, обеспечивающий прохождение тока между электродами. Для того чтобы знать, каким закономерностям подчиняются электрохимические реакции, от чего зависит их скорость, что является источником электрической энергии в электрохимической системе и каков механизм прохождения электрического тока, необходимо изучить свойства растворов электролитов, электрохимические равновесия на поверхности раздела двух фаз, термодинамику электрохимических систем и кинетику электродных процессов. [c.6]

    На рис. 4.44 и 4.45 изобраясена резкая граница межд> валентной зоной и зоной проводимости. В действительности эта граница размыта вследствие теплового движения электроны могут переходить с верхних уровней валентной зоны на нижние уровни зоны проводимости. Способность этих электронов свободно передвигаться по кристаллу и переносить энергию из одной его части (нагретой) в другую (холодную) служит причиной высокой теплопроводности металлов. Таким образом, и электрическая проводимость и теплопроводность металлов обусловлены возможностью свободного передвижения электронов зоны проводимости. Именно поэтому для большинства металлов наблюдается параллелизм между этими величинами. Например, лучшие проводники электричества — серебро и медь — обладают и наиболее высокой теплопроводностью. [c.150]

    В 1 было отмечено, что каждый металл обладает специфическими, присупхими только ему свойствами. Так, серебро является наилучшим проводником электричества, и и наиболее важных и точных электрических схемах (например, в электронной аппаратуре на космических спутниках). Золото является наиболее пластичным из металлов, и оно используется именно тогда, когда необходимы максимально тонкие пластинки (вспомните опыт Резерфорда). [c.320]

    Пусть проводник электричества, заключенный в трубку (см. рис. VIII. 1), однороден не только в плоскости Z —у, но и по оси X, и по этой оси нет градиентов температуры и давления. Наложим внешнее электрическое поле с напряженностью д( /дх = grad ф О ([c.447]

    Естественная радиоактивность. Явление радиоактивности было открыто в 1896 г. известным французским физиком АнриБек-керелем , который установил, что металлический уран, а также его минералы и соединения испускают невидимое излучение. Воздух по соседству с препаратами становится хорошим проводником электричества. Излучение вызывало почернение фотографической пластинки, завернутой в черную бумагу или закрытой непрозрачными предметами. Излучательная способность урансодержащего препарата не зависела от температуры, от его агрегатного состояния, а определялась только содержанием урана. Беккерель из этих наблюдений сделал заключение, что способностью к излучению обладают атомы урана. [c.393]

    Серебро употребляется в электромашиностроении и приборостроении как очень хороший и малоокисляющийся проводник электричества. Серебро входит в состав припоев (ПСр40), используется как защитное покрытие для других металлов, а его соединения (AgBr) применяют для производства фоточувствительных материалов. [c.385]


Лучшие проводники электрического тока: характеристики веществ, пропускающих электричество

При использовании электроприборов человек постоянно сталкивается с веществами, которые являются проводниками, полупроводниками и диэлектриками, не проводящими ток. Эти материалы отличаются степенью электропроводности. Для того чтобы работать с бытовой техникой, необходимо знать все их особенности и характеристику. Выбрать лучший проводник электрического тока можно из металлов.

Особенности понятия

Проводниками тока называют те вещества, в которых количество свободных электрических зарядов превышает число связанных. Они могут начинать двигаться под влиянием внешней силы. Состояние материалов может быть газообразным, твёрдым и жидким. Электричество может протекать по металлической проволоке, если её подключить между двумя проводниками с разными потенциалами.

Ток переносят электроны, не связанные между собой атомами. Именно они способны охарактеризовать способность предмета пропускать через себя электрические заряды, или величину проводимости тока. Её значение обратно пропорционально сопротивлению, она измеряется в сименсах: См = 1/Ом.

Основные носители электричества в природе — это ионы, дырки и электроны. Поэтому способность к проводимости делят на три вида:

  • ионную;
  • электронную;
  • дырочную.

Приложенное напряжение даёт возможность оценить качество проводника. Эту способность вещества называют ещё вольт-амперной характеристикой.

Первый и второй род

После того как получилось разобраться с тем, что проводит электрический ток, нужно узнать особенности некоторых веществ. Проводники могут быть разными — металлическая проволока, морская вода. Но в них ток различается, поэтому вещества делят на две группы:

  • первого рода, в которых электричество протекает по электронам;
  • второй вид — на основе ионов.

К первым относят все металлы и углерод. Ко второму роду относят щелочи, кислоты, соляные расплавы — электролиты. В них ток представляет упорядоченное движение отрицательных и положительных ионов. Электричество в таких материалах протекает при любом показателе напряжения. В обычных условиях хороший проводник электрического тока — это изделие из золота, серебра, алюминия или меди.

Их двух последних материалов изготавливают кабели, отличающиеся низкой стоимостью. Качественное жидкое вещество, проводящее ток — ртуть, а также ток хорошо протекает через углерод. Но это вещество не обладает гибкостью, поэтому на практике его не применяют. Хотя физики недавно смогли представить углерод в форме графена, что позволило из его нитей изготавливать шнуры.

У графеновых изделий сопротивление такое, что оно является недопустимым для проводников. Их позволительно использовать только в нагревателях. В этом случае металлические провода из никеля и хрома проигрывают, так как они не могут выдержать очень высокую температуру. Спирали в лампах дневного света изготавливают из вольфрама. Этот материал способен накаливаться, так как вещество является тугоплавким.

Процессы в электропроводниках

Во время протекания электричества проводник попадает под определённое воздействие. Самое главное — это повышение температуры. А также выделяют некоторые химические реакции, которые могут изменить физические свойства вещества. Более всего такому влиянию подвергаются проводники второго рода. В них протекает химическая реакция, которую называют электролизом.

Ионы веществ около электрических полюсов получают необходимый заряд и восстанавливают исходное состояние, которое было у них до образования щелочи, кислоты или соли. С помощью электролиза химики и физики могут получать чистые химические вещества из природного сырья. Таким образом создают алюминий и другие виды металлов.

Вещества первого и второго рода участвуют в других процессах, кроме проводимости электричества. К примеру, во время взаимодействия кислоты со свинцом возникает химическая реакция, которая вызывает выделение тока. По такому принципу работают все аккумуляторы. Проводники первой группы при контакте друг с другом могут изменяться. Медь и алюминий при эксплуатации нужно покрывать специальной оболочкой, иначе оба металла просто расплавятся. Влажный воздух приведёт к тому, что произойдёт электрохимическая реакция. Поэтому проводники покрывают слоем лака или другого защитного материала.

Некоторые проводники не могут оказывать электричеству сопротивление при холодном воздухе. Такое явление называют сверхпроводимостью, которая соответствует значению температуры, близкой к химическому состоянию жидкого гелия. Но исследования привели к тому, что есть новые проводники с высокими показателями температуры.

Такие вещества были открыты в 20 веке. Керамика из кислорода, бария, меди и лантана при обычных условиях не проводит ток, но после нагревания становится сверхпроводником. На практике выгодно использовать вещества, которые могут пропускать электричество при 58 градусах по Кельвину и выше — температуре, превышающей отметку кипения азота.

Жидкость и газы, проводящие ток, используют реже твёрдых веществ. Но и они необходимы для изготовления современных электрических приборов.

Лучшим проводником электрического тока является металл

Ценность металлов напрямую определяется их химическими и физическими свойствами. В случае с таким показателем, как электропроводимость, эта связь не так прямолинейна. Самый электропроводный металл, если измерять данный показатель при комнатной температуре (+20 °C), — серебро.

Физический смысл проводимости

Использование металлических проводников имеет давнишнюю историю. Ученые и инженеры, работающие в областях науки и техники, использующих электроэнергию, давно определились с материалами для проводов, клемм, контактов, печатных плат и т. д. Определить самый электропроводный металл в мире помогает физическая величина, называемая электрической проводимостью.

Понятие проводимости обратно электрическому сопротивлению. Количественное выражение проводимости связано с единицей сопротивления, которое в международной системе единиц (СИ) измеряется в Омах. Единица электрической проводимости в системе СИ – сименс. Русское обозначение этой единицы – См, интернациональное – S. Электрической проводимостью в 1 См обладает участок электрической сети с сопротивлением в 1 Ом.

Удельная проводимость

Мера способности вещества проводить электроток называется удельной электропроводностью. Самым высоким подобным показателем обладает самый электропроводный металл. Эта характеристика может быть определена для любого вещества или среды инструментально и имеет числовое выражение. Удельная электропроводность цилиндрического проводника единичной длины и единичной площади сечения связана с удельным сопротивлением данного проводника.

Системной единицей удельной проводимости является сименс на метр – См/м. Чтобы выяснить, какой из металлов самый электропроводный металл в мире, достаточно сравнить их удельную проводимость, определенную экспериментально. Можно определить удельное сопротивление при помощи специального прибора – микроомметра. Эти характеристики являются обратнозависимыми.

Проводимость металлов

Само понятие электрического тока как направленного потока заряженных частиц кажется более гармоничным для веществ, основанных на кристаллических решетках свойственных металлам. Носителями зарядов при возникновении электрического тока в металлах являются свободные электроны, а не ионы, как это бывает в жидких средах. Экспериментально установлено, что при возникновении тока в металлах не происходит переноса частиц вещества между проводниками.

Металлические вещества отличаются от других более свободными связями на атомарном уровне. Внутреннее устройство металлов отличается присутствием большого числа «одиноких» электронов. которые при малейшем воздействии электромагнитных сил образуют направленный поток. Поэтому не зря именно металлы являются лучшими проводниками электрического тока, и именно такие молекулярные взаимодействия отличают самый электропроводный металл. На особенностях структуры кристаллической решетки металлов основано еще одно их специфическое свойство — высокая теплопроводность.

Топ лучших проводников — металлов

4 металла, имеющие практическое значение для их применения в качестве электропроводников распределяются в следующем порядке относительно величины удельной проводимости, измеряемой в См/м:

  1. Серебро — 62 500 000.
  2. Медь – 59 500 000.
  3. Золото – 45 500 000.
  4. Алюминий — 38 000 000.

Видно, что самый электропроводный металл – серебро. Но подобно золоту, оно используется для организации электрической сети лишь в особых специфических случаях. Причина – высокая стоимость.

Зато медь и алюминий – самый распространенный вариант для электроприборов и кабельной продукции благодаря низкому сопротивлению электрическому току и ценовой доступности. Другие металлы применяются в качестве проводников редко.

Факторы, влияющие на проводимость металлов

Даже самый электропроводный металл снижает свою проводимость, если в нём присутствуют другие добавки и примеси. У сплавов иная, чем у «чистых» металлов, структура кристаллической решетки. Она отличается нарушением в симметрии, трещинами и другими дефектами. Снижается проводимость и при повышении температуры окружающей среды.

Повышенное сопротивление, присущее сплавам, находит применение в нагревательных элементах. Неслучайно для изготовления рабочих элементов электропечей, обогревателей применяют нихром, фехраль и другие сплавы.

Самый электропроводный металл — это драгоценное серебро, больше используемое ювелирами, для чеканки монет и т. д. Но и в технике и приборостроении его особые химические и физические свойства находят широкое применение. Например, кроме использования в узлах и агрегатах с пониженным сопротивлением, серебряное напыление предохраняет контактные группы от окисления. Уникальные свойства серебра и сплавов на его основе часто делают его применение оправданным, несмотря на высокую стоимость.

Какой металл является наилучшим проводником?

Самый лучший проводник тепла и электричества является также и самым отражающим из всех химических элементов. Главный недостаток серебра в том, что оно слишком дорогое. Единственная причина, почему в нашем электрооборудовании мы используем не серебряные, а медные провода, заключается в том, что медь – второй по проводимости элемент – намного дешевле.

Помимо украшений, серебро главным образом используется в фотопромышленности, батарейках с длительным сроком эксплуатации и солнечных панелях.

Серебро обладает любопытнейшей способностью стерилизовать воду. Причем требуется буквально крошечное количество – десять частей на миллиард. Сей удивительный факт был известен еще с древнейших времен: так, в V веке до н. э. Геродот писал о персидском царе Кире, который постоянно возил с собой личный запас воды, взятой из особого источника, вскипяченной и запечатанной в серебряные сосуды.

И римляне, и греки не раз отмечали, что еда и питье, помещенные в серебряную посуду, сохраняются намного дольше. Сильные бактерицидные качества серебра использовались за множество веков до того, как были обнаружены сами бактерии. Этим можно объяснить, почему на дне древних колодцев часто находят серебряные монеты.

Небольшое предостережение, прежде чем вы начнете лить пиво в свою серебряную кружку.

Во-первых, серебро хоть и убьет бактерии в лабораторных условиях, однако далеко не факт, что оно даст тот же самый эффект, оказавшись у вас внутри. Многие из предполагаемых достоинств серебра до сих пор не подтверждены. А Управление по санитарному надзору за качеством пищевых продуктов и медикаментов в США даже запретило компаниям рекламировать пользу серебра для здоровья.

Во-вторых, существует такая болезнь – аргирия. Ее развитие напрямую связано с попаданием внутрь организма человека частиц серебра, растворенных в воде. Наиболее явным симптомом аргирии является отчетливый голубой оттенок кожи.

С другой стороны, соли серебра являются наиболее безопасным заменителем хлора в воде плавательных бассейнов, а в США серебром даже пропитывают носки легкоатлетов, чтобы ноги не пахли.

Вода – исключительно плохой проводник электричества, особенно вода чистая, которая, кстати, используется как диэлектрик. Все дело в том, что электричество проводят не молекулы H 2O, а растворенные в воде химикаты – например, соль.

Морская вода проводит электричество в сто раз лучше пресной, но даже при этом она в миллион раз худший проводник электричества по сравнению с серебром.

Найден металл, который пропускает электрический ток без производства тепла.

Наличие такого свойства у металла противоречит закону Видемана-Франца.

Недавно исследователи из США сообщили об открытии металла, который проводит электричество и при этом практически не проводит тепло – невероятно полезное свойство, которое совершенно не соответствует сложившемуся представлению о том, как работают проводники.

Существование такого свойства у металла противоречит закону Видемана-Франца, который гласит, что хорошие проводники электричества также будут пропорционально хорошими проводниками тепла. Например, по этой причине моторы или различные электрические бытовые приборы нагреваются при их регулярном использовании и их необходимо охлаждать.

Исследователи показали, что такой закон совершенно не применим к двуокиси ванадия (VO2) – вещество, которое уже хорошо известно учёным благодаря странной способности «переключаться» между состояниями прозрачного диэлектрика и электропроводящего металла при температуре 67 градусов по Цельсию.

«Совершенно неожиданная находка, — говорит ведущий автор исследования материаловед Цзюньцяо У (Junqiao Wu) из Калифорнийского университета в Беркли. – Она демонстрирует серьёзное нарушение в хрестоматийном законе, который считался неопровержимым для обыкновенных проводников. Открытие имеет фундаментальное значение для понимания основ электронного поведения новых проводников».

Примечательно, что исследование учёных не только поможет узнать больше о неожиданных свойствах проводников, но оно также может пригодиться и в быту. Например, такой металл однажды можно было бы использовать для преобразования отработанного тепла из двигателей или электронных приборов обратно в электричество, или создавать улучшенные оконные покрытия, которые смогут сохранять прохладу в зданиях.

Специалисты уже знают о некоторых других материалах, которые проводят электричество лучше, чем тепло. Но они демонстрируют такие свойства только при температурах в сотни градусов ниже нуля по Цельсию (что довольно непрактично для любого реального применения). В то же время двуокись ванадия является проводником только при температурах выше комнатной. Следовательно, ему можно найти больше применений на практике.

Отмечается, что учёные, изучая это странное свойство вещества, наблюдали за тем, как движутся электроны внутри кристаллической решётки двуокиси ванадия, а также определяли, сколько при этом вырабатывается тепла. Выяснилось, что теплопроводность VO2 была в десять раз меньше, чем значение, предсказанное законом Видемана-Франца.

Причина этому, как представляется, может крыться в том, что «электроны оксида ванадия двигались в унисон друг с другом, как жидкость, а не как отдельные частицы в обыкновенных металлах», считает У.

«Для электронов тепло – это случайное движение. Обыкновенные металлы эффективно переносят тепло, поскольку существует множество различных возможных микроскопических конфигураций, между которыми отдельные электроны могут переключаться, — поясняет учёный. – Напротив, согласованное движение электронов в двуокиси ванадия пагубным образом сказывается на передаче тепла из-за меньшего количества конфигураций, между которыми электроны смогли бы «перепрыгивать».

Исследователи также смешивали диоксид ванадия с другими металлами, чтобы таким образом «настроить» объём тока и тепла, которое вещество проводило. Такие возможности очень пригодились бы для будущих применений, добавляют учёные.

Например, когда специалисты добавляли металл вольфрам к двуокиси ванадия, они снижали температуру, при которой материал становился металлическим, а также делали его лучшим проводником тепла.

Но в любом случае учёным предстоит провести ещё много исследований прежде, чем интересный материал найдёт применение в обычной жизни. Первые результаты научной работы и описание необычных свойств двуокиси ванадия опубликованы в научном издании Science.

Добавим, что ранее оказалось, что графен проводит электричество в 10 раз лучше, чем предсказывала теория.

Лучший проводник электричества: выбор правильных металлов

В Quest-Tech мы используем различные сорта углеродистой, нержавеющей стали, алюминия, латуни и меди, и у нас есть производственные мощности для удовлетворения ваших производственных потребностей под одной крышей. Хотя все металлы (и некоторые металлические сплавы) в определенной степени проводят электричество, некоторые из них обладают большей проводимостью, чем другие. Лучший проводник электричества может вас удивить!

Какой металл является лучшим проводником электричества?

Серебро

Лучшим проводником электричества является чистое серебро, но неудивительно, что это не один из наиболее часто используемых металлов для проведения электричества.

Широкое использование чистого серебра имеет несколько недостатков. Во-первых, он имеет тенденцию тускнеть при использовании, что вызывает проблемы, связанные с «скин-эффектом», т. е. неравномерным распределением тока, которое может возникать в высокочастотных токах. Второй недостаток является наиболее очевидным — просто слишком дорого прокладывать серебряный провод через здание — гораздо дороже, чем алюминиевый или медный.

Медь

Одним из наиболее часто используемых металлов для проведения электричества является медь. Как материал, медь податлива, ее легко наматывать или паять, что делает ее лучшим выбором, когда требуется большое количество проводки.Основная электрическая функция меди связана с передачей электроэнергии и выработкой электроэнергии. Он используется в двигателях, генераторах, трансформаторах и втулках. При правильной установке это самый безопасный и эффективный металл для производства электроэнергии.

Медь

обычно используется в качестве эффективного проводника в бытовых приборах и электрооборудовании в целом. Из-за низкой стоимости большинство проводов имеют медное покрытие. Часто можно встретить сердечники электромагнитов, обычно обмотанные медной проволокой.Медь также используется в микроэлектронных проводниках, электрических схемах и микропроцессорах из-за ее высокой проводимости и низкого сопротивления джоулеву нагреву. Он также используется в мобильных телефонах, телевизорах и компьютерах.

Алюминий

Алюминий — еще один металл, известный своей высокой электропроводностью. Хотя по объему его проводимость составляет всего 60% от меди, по весу один фунт алюминия имеет электрическую токонесущую способность двух фунтов меди. Это делает его очень экономичным материалом, и из-за этого он все чаще заменяет медь в некоторых приложениях, связанных с электричеством.

Алюминий используется в линиях электропередач на большие расстояния, при передаче и распределении электроэнергии высокого напряжения в коммунальной сети; и, в служебном узле, служебный вход и устройство подачи проволоки. Его плотность и исключительно низкая стоимость делают его очень разумным выбором для многих крупномасштабных электрических применений, таких как электрические силовые кабели, электрические разъемы и даже электрические контакты автоматических выключателей. Алюминий часто используется в спутниковых антеннах.

Золото

Золото

также известно своей высокой проводимостью, но из-за его стоимости его используют в умеренных количествах.Микрочипы могут иметь золотые провода для соединений, а там, где требуется высокая стойкость к окислению и коррозии наряду с высокой проводимостью, используется очень тонкое золотое покрытие.

Когда речь идет о металлических сплавах, их физические свойства могут улучшить основной металл в таких областях, как прочность, долговечность, устойчивость к условиям окружающей среды и применение в электротехнике.

Например, латунь — сплав меди — также используется для проведения электричества. Это делается путем добавления примерно 30% цинка в чистую медь.Хотя электрическая и теплопроводность латунного сплава составляет всего 28% от проводимости меди, его немагнитные свойства делают его идеальным для электрических и электронных клемм и разъемов.

Какой металл является самым плохим проводником электричества?

Нержавеющая сталь

Несмотря на то, что электропроводность неизвестна, различные марки нержавеющей стали по-прежнему имеют важные электрические применения. Тип 304 и тип 316 являются наиболее распространенными марками, используемыми в электротехнической промышленности из-за их превосходной коррозионной стойкости.Электрические шкафы для настенного и напольного монтажа и отдельно стоящие распределительные коробки изготовлены из нержавеющей стали.

Обратитесь к экспертам по металлам в Quest-Tech

Quest-Tech знает, что правильный выбор металла для работы может иметь решающее значение, будь то электрические или другие требования. Наш опыт заключается в производстве металлических компонентов и сборочных конструкций, и мы здесь, чтобы ответить на любые ваши вопросы и помочь вам принять правильное решение. Хотите использовать Quest-Tech для своего следующего проекта? Свяжитесь с нами сегодня!

Какой металл является лучшим проводником?

Давайте вернемся к периодической таблице, чтобы объяснить, какие металлы лучше всего проводят электричество.Количество валентных электронов в атоме — это то, что делает материал способным проводить электричество. Внешняя оболочка атома – это валентность. В большинстве случаев проводники имеют один или два (иногда три) валентных электрона.

Металлы с ОДНИМ валентным электроном: медь, золото, платина и серебро. У железа два валентных электрона. Несмотря на то, что алюминий имеет три валентных электрона, он также является отличным проводником. Полупроводник — это материал, который имеет четыре валентных электрона.

Электропроводность

Металлическая связь заставляет металлы проводить электричество.В металлической связи атомы металла окружены постоянно движущимся «морем электронов». Это движущееся море электронов позволяет металлу проводить электричество и свободно перемещаться среди ионов.

Большинство металлов в определенной степени проводят электричество. Некоторые металлы обладают более высокой проводимостью, чем другие. Медь, серебро, алюминий, золото, сталь и латунь являются обычными проводниками электричества. Наиболее проводящими металлами являются серебро, медь и золото.

Проводящий порядок металлов

Этот список электропроводности включает сплавы, а также чистые элементы.Поскольку размер и форма вещества влияют на его проводимость, в списке предполагается, что все образцы имеют одинаковый размер. Вот основные типы металлов и некоторые распространенные сплавы в порядке убывания отношения проводимости, как указано в Metal Detecting World.

наилучшего в худшем случае — какой металл лучший проводник электричества

(одинаково размером)

1
2
2 медь (чистые)
3 Золото (Чистый)
4 Алюминиевый
5 Цинк
6 Никель
7 Латунь
8 Бронзовый
9 Железо (Pure)
10 Platinum
11 11
12
12
13 Нержавеющая сталь

серебро Проводимость

«Серебро — лучший проводник электричества, потому что оно содержит большее количество подвижных атомов (свободных электронов).Чтобы материал был хорошим проводником, электричество, проходящее через него, должно перемещать электроны; чем больше в металле свободных электронов, тем больше его проводимость. Однако серебро дороже других материалов и обычно не используется, если только оно не требуется для специализированного оборудования, такого как спутники или печатные платы», — поясняет Sciencing.com.

Проводимость меди

«Медь обладает меньшей проводимостью, чем серебро, но дешевле и обычно используется в качестве эффективного проводника в бытовых приборах.Большинство проводов покрыты медью, а сердечники электромагнитов обычно обмотаны медной проволокой. Медь также легко паять и наматывать на провода, поэтому ее часто используют, когда требуется большое количество проводящего материала», — сообщает Sciencing.com. подвергается воздействию воздуха, это слишком дорого для обычного использования. Индивидуальные свойства делают его идеальным для конкретных целей.

Алюминий Проводимость

Алюминий может проводить электричество, но он не так хорошо проводит электричество, как медь.Алюминий образует электростойкую оксидную поверхность в электрических соединениях, что может привести к перегреву соединения. В высоковольтных линиях электропередач, заключенных в стальной корпус для дополнительной защиты, используется алюминий.

Цинк Проводимость

На сайте ScienceViews.com поясняется, что «цинк — это металлический элемент серо-голубого цвета с атомным номером 30. При комнатной температуре цинк хрупок, но становится ковким при 100 C. Податливость означает, что его можно согнуть. и формируется без разрыва. Цинк — умеренно хороший проводник электричества».

Никель Проводимость

Большинство металлов проводят электричество. Никель является элементом с высокой электропроводностью.

Латунь Проводимость

Латунь — это гибкий металл, используемый для небольших машин, поскольку его легко сгибать и формовать из него различные детали. Его преимущества перед сталью заключаются в том, что он немного более проводящий, дешевле в покупке, менее коррозионно-активен, чем сталь, и сохраняет ценность после использования. Латунь — это сплав.

Бронза Проводимость

Бронза представляет собой электропроводный сплав, а не элемент.

Проводимость железа

Железо имеет металлические связи, благодаря которым электроны могут свободно перемещаться вокруг более чем одного атома. Это называется делокализацией. Из-за этого железо является хорошим проводником.

Платина Проводимость

Платина является элементом с высокой электропроводностью и более пластична, чем золото, серебро или медь. Он менее пластичен, чем золото. Металл обладает отличной коррозионной стойкостью, стабилен при высоких температурах и обладает стабильными электрическими свойствами.

Проводимость стали

Сталь — это проводник и сплав железа. Сталь обычно используется для покрытия других проводников, потому что это негибкий и очень коррозионный металл при воздействии воздуха.

Проводимость свинца

«Хотя соединения свинца могут быть хорошими изоляторами, чистый свинец — это металл, проводящий электричество, что делает его плохим изолятором. Удельное сопротивление свинца составляет 22 миллиардных доли метра. Он находит применение в электрических контактах, потому что, будучи относительно мягким металлом, легко деформируется при затягивании и обеспечивает прочное соединение.Например, разъемы для автомобильных аккумуляторов обычно изготавливаются из свинца. Стартер автомобиля кратковременно потребляет более 100 ампер тока, что требует надежного подключения к аккумулятору», — поясняет сайт Sciencing.com.

Проводимость нержавеющей стали

Нержавеющая сталь является относительно хорошим проводником электричества, как и все металлы.

Факторы, влияющие на электропроводность

Некоторые факторы могут влиять на то, насколько хорошо материал проводит электричество. ThoughtCo объясняет эти факторы здесь:

  • Температура:  Изменение температуры серебра или любого другого проводника изменяет его проводимость.Как правило, повышение температуры вызывает тепловое возбуждение атомов и снижает проводимость при одновременном увеличении удельного сопротивления. Зависимость линейна, но нарушается при низких температурах.
  • Примеси: Добавление примеси в проводник снижает его проводимость. Например, стерлинговое серебро не является таким хорошим проводником, как чистое серебро. Окисленное серебро не является таким хорошим проводником, как незапятнанное серебро. Примеси препятствуют потоку электронов.
  • Кристаллическая структура и фазы:  При наличии разных фаз материала проводимость немного замедляется на границе раздела и может отличаться от одной структуры к другой.Способ обработки материала может повлиять на то, насколько хорошо он проводит электричество.
  • Электромагнитные поля: Проводники генерируют свои собственные электромагнитные поля, когда через них проходит электричество, при этом магнитное поле перпендикулярно электрическому полю. Внешние электромагнитные поля могут создавать магнитосопротивление, которое может замедлять течение тока.
  • Частота:  Количество циклов колебаний переменного электрического тока, совершаемых в секунду, равно его частоте в герцах.Выше определенного уровня высокая частота может привести к тому, что ток будет течь вокруг проводника, а не через него (скин-эффект). Поскольку нет колебаний и, следовательно, нет частоты, скин-эффект не возникает при постоянном токе.

Посетите Tampa Steel & Supply для качественной стали и алюминия

Вам нужны поставки стали? Не ищите ничего, кроме профессионалов Tampa Steel and Supply. У нас есть обширный список металлопродукции для любого проекта, который вам нужен.Мы гордимся тем, что обслуживаем наших клиентов почти четыре десятилетия, и готовы помочь вам с вашими потребностями в стали. Есть вопросы? Позвоните нам сегодня, чтобы узнать больше, или зайдите в наш прекрасный выставочный зал в Тампе.

Запросите расценки онлайн
или позвоните в Tampa Steel & Supply по телефону (813) 241-2801

Проводящие и проводящие элементы

Электропроводность относится к способности материала передавать энергию. Существуют различные типы проводимости, включая электрическую, тепловую и акустическую проводимость.Самым электропроводящим элементом является серебро, за ним следуют медь и золото. Серебро также обладает самой высокой теплопроводностью среди всех элементов и самым высоким коэффициентом отражения света. Хотя это лучший проводник, медь и золото чаще используются в электротехнике, потому что медь дешевле, а золото обладает гораздо более высокой коррозионной стойкостью. Поскольку серебро тускнеет, оно менее желательно для высоких частот, потому что внешняя поверхность становится менее проводящей.

Что касается , почему серебро является лучшим проводником, ответ заключается в том, что его электроны могут двигаться свободнее, чем электроны других элементов.Это связано с его валентностью и кристаллической структурой.

Большинство металлов проводят электричество. Другими элементами с высокой электропроводностью являются алюминий, цинк, никель, железо и платина. Латунь и бронза являются электропроводящими сплавами, а не элементами.

Таблица электропроводности металлов

Этот список электропроводности включает сплавы, а также чистые элементы. Поскольку размер и форма вещества влияют на его проводимость, в списке предполагается, что все образцы имеют одинаковый размер.В порядке от наиболее проводящего к наименее проводящему:

  1. Silver
  2. CORM
  3. CODE
  4. GOLD
  5. алюминий
  6. Zinc
  7. Zinc
  8. Nickel
  9. Nickel
  10. Bronze
  11. Iron
  12. Iron
  13. Platinum
  14. Углеродистая сталь
  15. Нержавеющая сталь

Факторы, влияющие на электропроводность

Некоторые факторы могут влиять на то, насколько хорошо материал проводит электричество.

  • Температура: Изменение температуры серебра или любого другого проводника изменяет его проводимость.Как правило, повышение температуры вызывает тепловое возбуждение атомов и снижает проводимость при одновременном увеличении удельного сопротивления. Зависимость линейна, но нарушается при низких температурах.
  • Примеси: Добавление примеси в проводник снижает его проводимость. Например, стерлинговое серебро не является таким хорошим проводником, как чистое серебро. Окисленное серебро не является таким хорошим проводником, как незапятнанное серебро. Примеси препятствуют потоку электронов.
  • Кристаллическая структура и фазы: Если в материале присутствуют разные фазы, проводимость немного замедляется на границе раздела и может отличаться от одной структуры к другой.Способ обработки материала может повлиять на то, насколько хорошо он проводит электричество.
  • Электромагнитные поля: Проводники генерируют собственные электромагнитные поля, когда через них проходит электричество, при этом магнитное поле перпендикулярно электрическому полю. Внешние электромагнитные поля могут создавать магнитосопротивление, которое может замедлять течение тока.
  • Частота: Количество циклов колебаний переменного электрического тока в секунду равно его частоте в герцах.Выше определенного уровня высокая частота может привести к тому, что ток будет течь вокруг проводника, а не через него (скин-эффект). Поскольку нет колебаний и, следовательно, нет частоты, скин-эффект не возникает при постоянном токе.

Какие металлы хорошо проводят электричество?

Электрические проводники обладают подвижными электрически заряженными частицами, называемыми в металлах «электронами». Когда электрический заряд прикладывается к металлу в определенных точках, электроны будут двигаться и пропускать электричество.Материалы с высокой подвижностью электронов являются хорошими проводниками, а материалы с низкой подвижностью электронов не являются хорошими проводниками, поэтому их называют «изоляторами».

TL;DR (слишком длинно, не читал)

Медь, серебро, алюминий, золото, сталь и латунь являются обычными проводниками электричества. Хотя серебро и золото эффективны, они слишком дороги для обычного использования. Индивидуальные свойства делают каждую из них идеальной для конкретных целей.

Наиболее распространены медь и серебро

Серебро является лучшим проводником электричества, поскольку оно содержит большее количество подвижных атомов (свободных электронов).Чтобы материал был хорошим проводником, электричество, проходящее через него, должно перемещать электроны; чем больше в металле свободных электронов, тем больше его проводимость. Однако серебро дороже других материалов и обычно не используется, если только оно не требуется для специализированного оборудования, такого как спутники или печатные платы. Медь менее проводящая, чем серебро, но она дешевле и обычно используется в качестве эффективного проводника в бытовых приборах. Большинство проводов покрыты медью, а сердечники электромагнитов обычно обмотаны медной проволокой.Медь также легко паять и наматывать на провода, поэтому ее часто используют, когда требуется большое количество проводящего материала.

Алюминий хорошо работает, но сопряжен с риском

Алюминий, если сравнивать его по весу, на самом деле обладает большей проводимостью, чем медь, и стоит дешевле. Алюминиевый материал используется в бытовых изделиях или в электропроводке, но это не самый распространенный выбор, поскольку он имеет несколько структурных недостатков. Например, алюминий имеет тенденцию образовывать электростойкую оксидную поверхность в электрических соединениях, что может привести к перегреву соединения.Вместо этого алюминий используется для высоковольтных линий электропередачи (таких как воздушные телефонные кабели), которые могут быть заключены в стальной корпус для дополнительной защиты.

Золото эффективно, но дорого

Золото является хорошим проводником электричества и не тускнеет, как другие металлы, на воздухе — например, сталь или медь могут окисляться (корродировать) при длительном контакте с кислородом. Золото особенно дорого и используется только для определенных материалов, таких как компоненты печатной платы или небольшие электрические разъемы.Некоторые материалы могут быть покрыты золотом в качестве электрического проводника или использовать небольшое количество золота, которое затем покрывается другим материалом для снижения производственных затрат.

Сплавы стали и латуни имеют специальное применение

Сталь представляет собой сплав железа, который также является проводником и представляет собой негибкий металл, вызывающий сильную коррозию на воздухе. Трудно отливается и не используется в мелких изделиях или машинах; вместо этого сталь используется для покрытия других проводников или для больших конструкций.Латунь, которая также является сплавом, представляет собой растяжимый металл, который позволяет легко сгибать и формовать различные детали для небольших машин. Он менее коррозионный, чем сталь, немного более проводящий, дешевле при покупке и сохраняет ценность после использования, в то время как стальной сплав ценен только при первой покупке.

Какие металлы проводят электричество? (Видеообновление)

Что такое электропроводность?

Электропроводность — это измеренная величина тока, создаваемого на поверхности металлической мишени.Проще говоря, это то, насколько легко электрический ток может течь через металл.

Какие металлы проводят электричество?

Хотя все металлы могут проводить электричество, некоторые металлы используются чаще из-за их высокой проводимости. Самый распространенный пример — медь. Он обладает высокой проводимостью, поэтому используется в электропроводке со времен телеграфа. Однако латунь, содержащая медь, обладает гораздо меньшей проводимостью, поскольку состоит из дополнительных материалов, снижающих ее проводимость, что делает ее непригодной для электрических целей.

Вы можете быть удивлены, узнав, что медь даже не является самым проводящим металлом, несмотря на то, что она используется во многих распространенных приложениях (и тот факт, что она используется в качестве измерительной линейки для оценки проводимости металлов). Другое распространенное заблуждение состоит в том, что чистое золото является лучшим проводником электричества. Хотя золото имеет относительно высокую проводимость, на самом деле оно менее проводимо, чем медь.

Какой металл лучше всего проводит электричество?

Ответ: Чистое серебро.Проблема с серебром в том, что оно может потускнеть. Эта проблема может вызвать проблемы в приложениях, где важен скин-эффект, например, при токах высокой частоты. Кроме того, он дороже меди, и небольшое увеличение проводимости не стоит дополнительных затрат.

Итак, если все металлы проводят электричество, то какой у них ранг? Взгляните на этот график:

Материал IACS (Международный стандарт отожженной меди)
Рейтинг Металл % Электропроводность*
1 Серебро (чистое) 105%
2 Медь 100%
3 Золото (чистое) 70%
4 Алюминий 61%
5 Латунь 28%
6 Цинк 27%
7 Никель 22%
8 Железо (чистое) 17%
9 Олово 15%
10 Фосфористая бронза 15%
11 Сталь (включая нержавеющую сталь) 3-15%
12 Свинец (чистый) 7%
13 Никель Алюминий Бронза 7%

* Показатели электропроводности выражены относительно меди.Рейтинг 100% не означает отсутствие сопротивления.

Как видите, различия в электропроводности значительно различаются в зависимости от металла. Как уже упоминалось, латунь имеет очень низкий рейтинг электропроводности, несмотря на то, что содержит медь, поэтому очень важно не делать предположений об электропроводности материала. Всегда проводите как можно больше исследований!

Для чего используется медь?

Поскольку медь является отличным электрическим проводником, в большинстве случаев она используется в электрических целях.Многие распространенные применения также зависят от одного или нескольких полезных свойств, таких как тот факт, что он является хорошим теплопроводником или имеет низкую реакционную способность (реакция с водой и кислотами).

Некоторые из распространенных применений меди включают:

Штыри в вилке на 13 А — используется, поскольку это электрический проводник с низкой реактивностью и прочностью.

Водопроводные трубы – Используется, потому что он пластичный (мягкий), но прочный и прочный. Он также имеет дополнительное преимущество, заключающееся в том, что он антибактериальный и имеет низкую реактивность.

Основание кастрюли – используется, потому что оно является хорошим теплопроводником с низкой реактивностью и прочностью.

Электрические кабели – Используется, потому что это хороший электрический проводник, пластичный и прочный. Это включает в себя проводку для электроники, такой как телевизионное оборудование и аксессуары.

Микропроцессоры – аналогичные электрическим кабелям; используется, потому что это хороший электрический проводник и пластичный.

Обновление видео

Нет времени читать блог?

Посмотрите приведенный ниже видеоблог, чтобы узнать, какие металлы лучше всего проводят электричество.

Металлические супермаркеты

Metal Supermarkets — крупнейший в мире поставщик мелких партий металла с более чем 100 обычными магазинами в США, Канаде и Великобритании. Мы являемся экспертами в области металлов и предоставляем качественное обслуживание клиентов и продукцию с 1985 года.

В супермаркетах металлов мы поставляем широкий ассортимент металлов для различных применений. Наш склад включает в себя: мягкую сталь, нержавеющую сталь, алюминий, инструментальную сталь, легированную сталь, латунь, бронзу и медь.

У нас есть широкий ассортимент форм, включая стержни, трубы, листы, пластины и многое другое. И мы можем порезать металл по вашим точным спецификациям.

Посетите сегодня один из наших более чем 100 офисов в Северной Америке.

Какой самый проводящий элемент?

Серебро — элемент с самой высокой электропроводностью.

Проводимость — это способность материала передавать энергию. Поскольку существуют разные формы энергии, существуют разные типы проводимости, включая электрическую, тепловую и акустическую проводимость.Серебро является наиболее проводящим элементом с точки зрения электропроводности. Углерод в форме алмаза является лучшим проводником тепла (лучшим металлом является серебро). Следующим лучшим проводником после серебра является медь, за ней следует золото. В целом металлы являются лучшими проводниками тепла и электричества.

Почему Сильвер лучший проводник?

Причина, по которой серебро является лучшим проводником электричества, заключается в том, что его электроны могут двигаться свободнее, чем электроны других элементов. Это связано с кристаллической структурой серебра и электронной конфигурацией.Хотя серебро является лучшим проводником электричества, оно легко тускнеет и теряет проводимость, а также стоит дороже меди. Золото используется, когда важна коррозионная стойкость.

Электропроводность элементов

Периодическая таблица электропроводности

Вот таблица электропроводности десяти наиболее проводящих элементов. Все эти элементы являются металлами. Многие сплавы также являются проводящими, включая углеродистую сталь, нержавеющую сталь, латунь, бронзу, галинстан и манганин.Неметаллы являются электрическими изоляторами, за некоторыми исключениями.

9 7
9002

2 Элемент

2 Проводимость (S / m AT 20 ° C)

серебро 6.30 × 10
COMPE 5.96 × 10
Gold
4.11 × 10 7
алюминий 3,77 × 10 7
Caltium 2.98 × 10 7
Вольфрам 1,79 × 10 7
цинка 1,69 × 10 7
Кобальт 1,60 × 10 7
Никель Таблица электропроводности химических элементов.

Теплопроводность элементов

Вот таблица теплопроводности элементов.В большинстве таблиц перечислены только металлы, потому что металлы в целом лучше проводят тепло, чем неметаллы. Алмаз (неметалл) является исключением.

+
Элемент Теплопроводность (Вт / CMK)
Алмаз (углерод) 8.95 до 13.50
Серебро 4,29
Медь 4,01
Золото 3,17
Алюминий 2,37
Бериллий 2.01
Кальций 2,01
Вольфрам 1,74
Магний 1,56
родий 1,5
кремния 1,48
Таблица теплопроводности химические элементы.

Ведут ли себя какие-либо неметаллы?

Хотя лучшими проводниками являются металлы, некоторые неметаллы проводят тепло и электричество. Алмаз (кристаллический углерод) является отличным проводником тепла, хотя и является электрическим изолятором.Однако аморфный углерод и графит проводят электричество. Полуметаллы являются хорошими проводниками. Германий и кремний не так хорошо проводят электричество, как графит, но они лучше, чем морская вода.

Факторы, влияющие на электропроводность

На электропроводность влияют несколько факторов:

  • Температура : Таблицы электропроводности включают температуру, поскольку повышение температуры вызывает термическое возбуждение атомов и снижает проводимость (увеличивает удельное сопротивление).В целом зависимость между температурой и проводимостью является линейной, но нарушается при низких температурах.
  • Размер и форма : Электрическое сопротивление пропорционально длине и обратно пропорционально площади поперечного сечения. Заряд течет с большей скоростью по более коротким проводам и проводам с большей площадью поперечного сечения.
  • Purity : Добавление примеси в проводник снижает электропроводность. Между тем легирование полупроводника может увеличить его проводимость.Потускневшее серебро не является таким хорошим проводником, как чистое серебро. Кремний, легированный фосфором, становится полупроводником N-типа, а кремний, легированный бором, становится полупроводником P-типа.
  • Кристаллическая структура : Кристаллическая структура элемента влияет на его проводимость. Алмаз и графит являются кристаллическими формами углерода. Алмаз является электрическим изолятором, а графит проводит электричество.
  • Фазы : Различные фазы могут присутствовать даже в чистом образце.Межфазные границы обычно замедляют проводимость. Таким образом, способ производства материала влияет на его проводимость.
  • Электромагнитные поля : Внешние электромагнитные поля могут создавать магнитосопротивление внутри электрического проводника. Кроме того, когда ток проходит через проводник, он создает магнитное поле. Магнитное поле перпендикулярно электрическому полю.
  • Частота : Частота – это количество циклов колебаний переменного электрического тока.Выше определенной частоты ток течет вокруг проводника, а не через него. Это называется скин-эффектом. Скин-эффект не возникает при постоянном токе, потому что нет колебаний и, следовательно, нет частоты.

Ссылки

  • Берд, Р. Байрон; Стюарт, Уоррен Э.; Лайтфут, Эдвин Н. (2007). Транспортные явления (2-е изд.). ISBN John Wiley & Sons, Inc. 978-0-470-11539-8 .
  • Холман, Дж. П. (1997). Теплопередача (8-е изд.). Макгроу Хилл.ISBN 0-07-844785-28.
  • Матула Р.А. (1979). «Удельное электрическое сопротивление меди, золота, палладия и серебра». Журнал физических и химических справочных данных . 8 (4): 1147. doi:10.1063/1.555614
  • Serway, Raymond A. (1998). Основы физики (2-е изд.). Форт-Уэрт, Техас; Лондон: Паб Saunders College. ISBN 978-0-03-020457-9.
  • «Теплопроводность элементов». Ангстом Наук.

Related Posts

Проводники и изоляторы

Электроны различных типов атомов имеют разные степени свободы для перемещения.В некоторых типах материалов, таких как металлы, самые внешние электроны в атомах настолько слабо связаны, что они хаотично перемещаются в пространстве между атомами этого материала не более чем под влиянием тепловой энергии комнатной температуры. Поскольку эти практически несвязанные электроны могут свободно покидать свои соответствующие атомы и плавать в пространстве между соседними атомами, их часто называют свободными электронами .

В других типах материалов, таких как стекло, электроны атомов имеют очень мало свободы для перемещения.Хотя внешние силы, такие как физическое трение, могут заставить некоторые из этих электронов покинуть свои соответствующие атомы и перейти к атомам другого материала, они не очень легко перемещаются между атомами внутри этого материала.

Эта относительная подвижность электронов внутри материала известна как электрическая проводимость . Проводимость определяется типами атомов в материале (количество протонов в ядре каждого атома, определяющее его химическую идентичность) и тем, как атомы связаны друг с другом.Материалы с высокой подвижностью электронов (много свободных электронов) называются проводниками , а материалы с низкой подвижностью электронов (мало свободных электронов или их отсутствие) называются изоляторами .

Вот несколько распространенных примеров проводников и изоляторов:

Проводники:

  • серебро
  • медь
  • золото
  • алюминий
  • железо
  • сталь
  • латунь
  • бронза
  • ртуть
  • графит
  • грязная вода
  • бетон

Изоляторы:

  • стекло
  • резина
  • масло
  • асфальт
  • стекловолокно
  • фарфор
  • керамика
  • кварц
  • (сухой) хлопок
  • (сухая) бумага
  • (сухая) древесина
  • пластик
  • воздух
  • алмаз
  • чистая вода

Необходимо понимать, что не все проводящие материалы имеют одинаковый уровень проводимости, и не все изоляторы одинаково устойчивы к движению электронов.Электропроводность аналогична прозрачности некоторых материалов для света: материалы, которые легко «проводят» свет, называются «прозрачными», а те, которые этого не делают, называются «непрозрачными». Однако не все прозрачные материалы одинаково пропускают свет. Оконное стекло лучше, чем большинство пластиков, и уж точно лучше, чем «прозрачное» стекловолокно. Так и с электрическими проводниками, одни лучше других.

Например, серебро является лучшим проводником в списке «проводников», обеспечивая более легкое прохождение электронов, чем любой другой упомянутый материал.Грязная вода и бетон также считаются проводниками, но проводимость этих материалов существенно ниже, чем у любого металла.

Физические размеры также влияют на проводимость. Например, если мы возьмем две полоски из одного и того же проводящего материала — одну тонкую, а другую толстую, — толстая полоска окажется лучшим проводником, чем тонкая, при той же длине. Если мы возьмем другую пару полосок — на этот раз обе одинаковой толщины, но одна короче другой, — более короткая будет обеспечивать более легкий проход для электронов, чем длинная.Это аналогично течению воды в трубе: толстая труба обеспечивает более легкое прохождение, чем тонкая труба, а короткая труба легче проходит воде, чем длинная труба, при прочих равных размерах.

Следует также понимать, что некоторые материалы изменяют свои электрические свойства в различных условиях. Стекло, например, является очень хорошим изолятором при комнатной температуре, но становится проводником при нагревании до очень высокой температуры. Такие газы, как воздух, обычно изолирующие материалы, также становятся проводящими при нагревании до очень высоких температур.Большинство металлов становятся хуже проводниками при нагревании и лучше при охлаждении. Многие проводящие материалы становятся идеально проводящими (это называется сверхпроводимостью ) при экстремально низких температурах.

В то время как нормальное движение «свободных» электронов в проводнике является случайным, без определенного направления или скорости, можно заставить электроны двигаться скоординированным образом через проводящий материал. Это равномерное движение электронов и есть то, что мы называем электричеством или электрическим током .Чтобы быть более точным, его можно было бы назвать динамическим электричеством в отличие от статического электричества, которое представляет собой неподвижное накопление электрического заряда. Точно так же, как вода течет через пустоту трубы, электроны могут двигаться в пустом пространстве внутри и между атомами проводника. На наш взгляд проводник может казаться твердым, но любой материал, состоящий из атомов, в основном представляет собой пустое пространство! Аналогия с потоком жидкости настолько уместна, что движение электронов в проводнике часто называют «потоком».»

Здесь можно сделать важное наблюдение. Поскольку каждый электрон равномерно движется через проводник, он давит на электрон впереди него, так что все электроны движутся вместе как группа. Начало и прекращение потока электронов по всей длине проводящего пути происходит практически мгновенно от одного конца проводника к другому, даже если движение каждого электрона может быть очень медленным. Приблизительная аналогия — трубка, заполненная шариками встык:

Трубка полна шариков, так же как проводник полон свободных электронов, готовых к перемещению под действием внешнего воздействия.Если один шарик внезапно вставить в эту полную трубку с левой стороны, другой шарик немедленно попытается выйти из трубки справа. Несмотря на то, что каждый шарик прошел небольшое расстояние, передача движения по трубе практически мгновенна от левого конца к правому концу, независимо от длины трубы. С электричеством общий эффект от одного конца проводника до другого происходит со скоростью света: стремительные 186 000 миль в секунду!!! Каждый отдельный электрон, тем не менее, проходит через проводник 90 234 гораздо 90 235 медленнее.

Если мы хотим, чтобы электроны текли в определенном направлении в определенное место, мы должны предоставить им надлежащий путь для движения, точно так же, как сантехник должен установить трубопровод, чтобы вода текла туда, куда он или она хочет. Чтобы облегчить это, провода изготовлены из металлов с высокой проводимостью, таких как медь или алюминий, самых разных размеров.

Помните, что электроны могут течь только тогда, когда у них есть возможность перемещаться в пространстве между атомами материала.Это означает, что электрический ток может быть только там, где существует непрерывный путь из проводящего материала, обеспечивающий канал для прохождения электронов. В аналогии с мрамором шарики могут течь в левую часть трубки (и, следовательно, через трубку) тогда и только тогда, когда трубка открыта с правой стороны для вытекания шариков. Если трубка заблокирована с правой стороны, шарики будут просто «скапливаться» внутри трубки, и «течь» шариков не будет.То же самое относится и к электрическому току: непрерывный поток электронов требует наличия непрерывного пути, чтобы обеспечить этот поток. Давайте посмотрим на схему, чтобы проиллюстрировать, как это работает:

Тонкая сплошная линия (как показано выше) является общепринятым символом непрерывного отрезка провода. Поскольку провод сделан из проводящего материала, такого как медь, входящие в его состав атомы имеют много свободных электронов, которые могут легко перемещаться по проводу. Однако в этом проводе никогда не будет непрерывного или равномерного потока электронов, если им не будет откуда прийти и куда уйти.Добавим гипотетический электрон «Источник» и «Назначение:»

Теперь, когда Источник электронов выталкивает новые электроны в провод с левой стороны, может происходить поток электронов по проводу (как показано стрелками, указывающими слева направо). Однако поток будет прерван, если токопроводящий путь, образованный проводом, прервется:

Поскольку воздух является изоляционным материалом, а воздушный зазор разделяет два куска провода, некогда непрерывный путь теперь прерван, и электроны не могут течь от Источника к Получателю.Это все равно, что разрезать водопроводную трубу пополам и заглушить сломанные концы трубы: вода не может течь, если из трубы нет выхода. С точки зрения электротехники, у нас было состояние электрической непрерывности , когда провод был цельным, и теперь эта непрерывность нарушается, когда провод разрезается и отделяется.

Если бы мы взяли другой кусок провода, ведущий к Пункту назначения, и просто физически соприкоснулись с проводом, ведущим к Источнику, у нас снова был бы непрерывный путь для движения электронов.Две точки на схеме указывают на физический контакт (металл-металл) между отрезками провода:

Теперь у нас есть непрерывность от Источника к новообразованной связи, вниз, вправо и вверх к Цели. Это аналогично установке «тройника» в одну из закрытых труб и направлению воды через новый сегмент трубы к месту назначения. Пожалуйста, обратите внимание, что через сломанный отрезок провода с правой стороны не протекают электроны, потому что он больше не является частью полного пути от источника к месту назначения.

Интересно отметить, что из-за этого электрического тока внутри проводов не происходит «износа», в отличие от водопроводных труб, которые в конечном итоге подвергаются коррозии и изнашиванию при длительном течении. Однако при движении электроны сталкиваются с некоторым трением, и это трение может генерировать тепло в проводнике. Это тема, которую мы рассмотрим более подробно позже.

ОБЗОР:

  • В проводящих материалах внешние электроны в каждом атоме могут легко приходить и уходить, и они называются свободными электронами .
  • В изолирующих материалах внешние электроны не так свободно перемещаются.
  • Все металлы электропроводны.
  • Динамическое электричество или электрический ток — это равномерное движение электронов в проводнике. Статическое электричество — это неподвижный накопленный заряд, образованный либо избытком, либо недостатком электронов в объекте.
  • Чтобы электроны могли непрерывно (неопределенно) течь через проводник, должен быть полный, непрерывный путь для их движения как в этот проводник, так и из него.

Уроки электрических цепей авторское право (C) 2000-2002 Тони Р.

Добавить комментарий

Ваш адрес email не будет опубликован.